
BBN Systems and Technologies Corporation
A Subidiar of Bol Berane ad N vrl Jnn Im

I
II Report..oAD-A214 585

Report "%'o. 7142

I
U

ACCESS TO MULTIPLE UNDERLYING
I SYSTEMS IN JANUS

I 'V

I Philip Rcs'nik

DTICII Sf ELECT E
NOV 2 2 1989

September 1989 D !)I
Submitted by:

BBN Syst-wms ard Technologies Corporation
10 Moulto.- StreetE Cambridg,-. MA 02138

nn'rRWJIN 'EM
Submitted c !

Defense A ,.anced Research Projects Agency (DARPA)
1400 Wil- .Blvd.

I Arlingtc. ,'A 22209

I oih 18BSeaTo89 i
I Copyright ")1988 BBN Systems and Technologies Corporation

• .- ,,-.- ,,,.,..,., "i a ia a a n a i i l l I ' [iM ond '

I Report No 7142

I,
I

ACCESS TO MULTIPLE UNDERLYING
I SYSTEMS IN JANUS
I F" a.

I Philip Resnik

NTIS C .y','

DTIC Tr-

September 1989 J:,t f,' - -l.

Submitted by:

BBN Systems and Technologies Corporation I
10 Moulton Street Dist ,
Cambridge, MA 02138

i Submitted to:

Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Blvd.
Arlington, VA 22209

I
1 Copyright (C) 1988 BBN Systems and Technologies Corporation

I

BBN Systems and Technologies Corporation Report No. 7142

This research was supported by the Advanced Research Projects Agency of the

Department of Defense and was monitored by ONR under Contract No. 00014-85-C-0016.

The views and conclusions contained in this document are those of the author and should

not be interpreted as necessarily representing the official policies, either expressed or

implied, of the Defense Advance6 Research Projects Agency or the U.S. Government.

Copyright © 1989 BBN Systems and Technologies Corporation

REPORT DOCUMENTAION PAGE OWot00 1
14 REPORTi !.1CURrr CLIIW"AtO It& owarrwI m&AuwJ
UNCLASSIFIED _______________________I s. SECURITY CL SSAFAI Au £ifl. Y 3. OISrY4&UT*wIAVAa.AMWUr Of REP04T

2b. O(QA&SiFCAT~IOOwf.CaAA008Q SK)4 (IAL

U . PEFRMN owb.a,"u.rio REPORT NUMGI1AS S. "QW1OG ORGAMLTO REPORT NaUAIJA

7142

6a. NAME OF PERIOAMW4 OAGA^aL~fOh 6C OFP4CI mim 7a. NOM OF 64OMTORING OGAA'LTOIBBN Systems and Technologies 0 lwne
Corporation Office of Naval Research

6C ADORESS (City. SwM. 'WV AP CM 7L. AcOMIss(wy. S~t.& e cw C
10 Moulton Street Department of the Navy

Cambridge, MA 02138 Arlington, VA 22217

I L . AME OF FUNOINGISPOMiOAING go. OFFICE SVWOL 9. PwxxmENTm INSTRtuwmN LONflFKAdTbor NumBeR
ORGANIZATIONE (ifIS6011

Defense Advanced Research DARPA ISTO
Vroject Agency I________________________

X. ADORISS (0My S*.t. aa L40 Couj 10. Souac OF FJNOWG NUM61ft
1400 Wilson Blvd. "OC~tAM 1 1rC A.SK IWORK U0T
Arlington, VA 22209 ELEAMENT NO. jO NO. jA .SJON NO.

I 1. TITLE (kwci Sawi Carcon
Access to Multiple Underlying Systems in,Janus

12- PERSONAL AUTHOVAS)

Interim Technical Rept l m ____ TO~ 14t89, OF tbrr 3s.

16. SUPPLEMENTARY NOTAMlN

1 17. COSATi CODES I5. 5SIAaa VnMS (CORfM in IVqWW It n*VW V~ &rW tMIW~f by OtAW"

FIELD GRU U40p Janus, Irus, Code Generation, Natural Language Interfaces

19. AASTPAC (Cato'w oni gyywg it merqvy &W aemy Arai A- e

U The job of the beck-erd of any natural language interface is to translate a logical description of
what the user wants (a request) into an efficient plan for fulfilling that request. Typically the request is to
produce data fro some widerlying system; that is, the database, applications program, or other system with
which the user is communicating by means of the interface. There has been a fair amount of work on the

problem of natural language interfaces to single underlying systems.

As computer systems become more complex, there is more oppx. ity for combining the
strengths of more tha one system in order to perform a task. For example, on might imagine combining
several resources: a database for storing relational information with an applications program to perform
calculations based on that information, an expert system to performp inferences, and a display system to
present data in a useful way. In such an environment a "seamless" natural language interface can become a
ttnontthdeilofaypriuareorevery effective too], allowing the user to retrieve and manipulate information without needing to pay

'0- 01STAISUTIOm/AVAjLA:IjUrY OF AISTRACT 1 . A&STAC' SECURITY CLASVIICATION
X2UNCLASSFIE0nJNUMI?(f r" SAME AS ROP 1is" nclassified
3 N~AAM Of ME S.iSLL *NOIVIOU.A4. 22b. TELEP"4t (mwivoo I~* 21c. OF$IE SYmBOL

I D CFrirn 1473. JUN846 f'Yv"Owla,o Jew .qU. SECV#IrV V..AS$t(.AflOPV 0f rtw P&GI

Cont. from Section 19.,.

The back-end of such an interface, however, is necessarily more complex: not only must it be able
to translate the user's request into executable code, but it must also be capable of organizing the various
resources at its disposal, choosing which combination of resources to use, and supervising the transfer of
data among them. We call this the multiple underlying systems (MUS) problem. This document describes
one approach to the MUS problem, a MUS component implemented as part of the back end of the Janus
natural language interface.

i Report No. '1142 BBN S terms and Technologies Corporation

I
Table of Contents

I Introduction
2 The Type System I
3 Normalizing WML Expression.,,

I3.1 Extensionalizin2 Intensional Subexpressions 3
3.2 Disjunctive Normal Fomi 4
3.3 Eliminating Equivalences
3.4 System-independent Rev, ntes 8
3.5 Pnntfunctions 9
3.6 Examples of Normal Form 9

4 Servers and Services 17.
5 Formulation 15

5.1 Partial Solutions I(
5.2 Matches 16
5.3 The Formulation Algorithm 18

I5.4 Formnulation and Embedded Contexts 20

6 Execution Planning 20
6.1 Partial Execution Plans 21
6.2 Partitioning and Establishing Dependencies 21

6.3 Servers' Execution Planners 22

7 Execution
7.1 Combining Data
7.2 Servers* Execution Functions 2

8 Status and Extensions 26
8.1 Experience 26
8.2 Limitations, and Extensions 26I'I

I
I
I
U
i
I
I

3 Report No. 7142 BBN Sstem, and Technologies Corporation

l
I Introduction!

The job of the back-end of any natural language interface is to tran-Late : logical description of what the user

wants (a request) into an efficient plan for fulfilling that request. Typicall, the request , t, pr,,duce data from sonic

u nderhiing ssten: that is. the database. applications program, or other s)stem %% ith vwhich the user i.,, communicating

b means of the interface. There has been a fair amount of work on the problem of natural language interfaces to

single underlying systems, for example. [51.

As computer systems become more complex, there is more opportunity for combining the strengths of more

than one system in order to perform a task. For example, one might imagine combining several resources a

database for stowidg reiational information with an applications program to perform calculations based on that

information, an expert system to perform inferences, and a display system to pr.,ent data in a useful way. In such

an enironment a "seamless" natural language interface can become a very effective tool. allo%%ing the user to3 retrieve and manipulate information without needing to pay attention to the details of any particular resource.

The back-end of such an interface. hokeer. is necessarily more complex: not only must it be able to translate

the user's request into executable code. but it must also be capable of organizing the various resources at its

disposal, choosing which combination of resources to use. and supervising the tranisfer of data among them. We call

this the multiple underlvuig system. MUS) problem. This document describes one approach to the NW'S problem. a3 M&'S component implemented as pan of the back end of the Janus natural language interface

We begin in section 2 with a brief description of Janus' tpe sistem, a component of the semantic

interpretation language (WML. for Wor!d Model Language) that plays an important role in both front-end and

back-end processing. Section 3 describes the translation of WML expressions into a simplified, nommalied form.

Section 4 discusses the way that the system represents the capabilities of underlying systems. Section 5 describes

the algorithfn used fo,- finding an effective combination of the services provided by the underlying systems, in order

to satisfy a given request. Section 6 describes how this combination of resources is used to produce an execution

plan. and section 7 deals ,sith the execution of this plan and the transfers of data this often entails. Finally. section 8

discusses the implementation of this approach. as well as limitations and extensions to this work.I
2 The Tl% pe System

The syntax of WML is "modelled after languages of the typed lambda calculus" ([21. p 27 ,. The import of

i this is perhaps most concisely expressed in [61:

Each type expression [or tvpel is associated with a set of entities or structures which is temied its domain. Every
expression of the language.. can be mapped to a type expression, whose doniain serves to delimit the range of value,
the expres,,on can take on.

A complete description of the t\ pe system associated with W'vIL is beyond the scope of this document, but in this

section we attempt lo ,convey a sense of it by mean, of examples

I

BBN Systems and Technologies Corporation Report No. 7142

The set of t)pes has two major subset., -- those that are independent of the domain, and those that are specific

to the domain. The former set include,; the types TV (twth-value). INTEGERS. STRINGS. REALS. TIMES. and

WORLDS: the latter consists of types constructed from concepts and roles in the domain-model. For example, if

VESSEL and LOCATION are domain-model concepts. and SHIP-LOCATION and COMBAT-READY are domain

roles. then some related tN pes might include:

Type Denotation

VESSEL all vessels

(S VESSEL) all sets of vessels
(TUPLE VESSEL LOCATION) all ordered pairs of vessel, location
(S (TUPLE VESSEL LOCATION)) all sets of such ordered pairs
(FuNC-TYPE VESSEL LOCATION) functions from vessels to locations
(FUNC-TYPE VESSEL TV) unary predicates on vessels

Here we present some types together vith examples of logical subexpressions haing those types ithat is.

(TYPEOF expression) = rtpc.

L.type VESSEL
Vincennes

(IOTA ?JXl VESSEL (COMBAT-READY ?JXl))

_.type (S VESSEL)
(SETOF Vincennes Kennedy)
(POWER VESSEL)
(SET ?JX2 VESSEL (COMBAT-READY ?JX2))
(IOTA ?JXl (POWER VESSEL) (COMBAT-READY ?JXI))

3. type (FUNC-TYPE VESSEL LOCATION)

SHIP-LOCATION
(LAMBDA (?JX3) VESSEL (VESSEL-LOCATION ?JX3))

4. type (FUNC-TYPE VESSEL TV)

COMBAT-READY
(LAMBDA (?JX4) VESSEL

(AND (EQUAL (VESSEL-LOCATION ?JX4) "HAWAII")

(COMBAT-READY ?JX4)))

3 Normalizing \\MIL Expressions

WNML input expressions are simplified and normalized before they are further processed by the multiple

underlying systems MRS) component. This stmplification process has five stages-

1. the extensionalization of intensional subexpressions,

2. the translation of the entire expression into a modified disjunctive normal form,

3. the elimination of unnecessary equivalences.

2

Report No. 7142 BIN Systems and TechnoIogies Corpiratiiin

I
4. tile application of underl. ing-svstem-indepeident re v rites. and

5. the use of printfunction., tbr inpro% ing responses.

These stages occur sequentiallN. and -- as the system is currentl, implemcnted -- must be done in the order pre-,ented3 here. In this section. "*e discuss each of these stages in sonic detail

.3.1 Extensionaii/ing inlensifnal Subexpressions

The first stage in nomalining a W.ML expression is the extensionalization of the logical tOrni'' intensional

subexpressions. Most underlying systems, ,hether they are databases, expert systems, or other appli.ation,,

programs, are extensional. Those that do take time and'or possible worlds into account tend to do it in a ',er>

discrete fashion. For example. the Na,. 's Integrated Data Base (IDB di, ides the temporal continuum for .Nhip.,

combat-readiness ratings into pre ious-readiness. current-readiness, and projected-readiness: a BBN object-onerited

simulator supports hypothetical worlds. but maintains discrete world-states in a tree-like hierarch\.

5 This discreteness makes it possible to "exten.sionah,,e" man\ intensional subexpressions 0ideadl\ all of them'

in the following manner given an intensional context (i.e., an intension together %kith its time and vorld indices).

even- predicate within the intensional expression "absorbs" the timetworld information. either i I b', replacing it

with a related but time- (or world-) specific predicate. or (2) by adding temporal,'morld-related information to the

predicate's argument list.

For example, the expression
((INTENSION (SHIP-LOCATION ?JX1 ?JX2)) 13-JULY-1965 DEFAULT-WORLD)3 might, according to the first of these ncw-,cds. be extensionalized as

(PAST-SHIP-LOCATION ?JX. ?JX2)

assuming that PAST-SIIlP-LOCATIO.V is a domain model predicate and that there is appropriate machiner for

choosing it on the basiS of the time indev This approach loses infomition, of course -- such a proce ,s of

extensionalization could not take place unless it is certain that no underling s vstem vould be interested in the

specifiL time index, that is. that the ne', predicate (PASI-StIP-L.OCATION is sufficient for the purposes of an,

underlying system.

Alternatively. che indexical information could be absorbed into the predicate argument structure. as in

(SHIP-LOCATION-AT-TIME ?JXI ?JX2 13-JULY-1965) .

This approach preserves the information: underlying systems are free to use the time argument. to infer f'rom it a

predicate like PAST-SItlP-LOCA4TOVN. or to ignore it altogether.

At the time of this writing, the implementation of extensionalization is incomplete, and for the moment

assumes that no predicate cares about time or %orld indices. Thus the intensional expression would simply be

extensionalid as3 (SHIP-LOCATION ?JX1 ?JX2).

I
I3

S

BBN Systems and Technologies Corporation Report No. 7142

The process \tensionaliation, as charactenized here. applies to more coniple, inlt.nsions. is xkeli one

may do a recursise %.dk through an inten.siop, renfning predicates (as abo~e. for example) on the bhsis of the rnnw

and world indices.

3.2 Disjunctike Normal Form

The second staie otf nomiahzation is the tranlation of the extensionaied "'NIL exprc.sin into a sonw. hat

simplified logical expression in a modified disjunctive normal form DN).

The expression is translated into a disjuncti-ve normal form for to main reasons. We normahie the

expression (reducing the number of embedded suexpressions. for exaniplci in order to stmplit) the process of

matching various piece , of it to underlying system capabilities We choose to use a disjuncti, e normal frtm,

because:

" In the simplest case. an expression in disjunctive normal fomi is simipl. a conjunction of clause,,. a
particularly easN logical form to cope with.

" Even w, hen there are disjuncts. each can be individually handled a,, a conjunction of clauses, and the
results then combined together via union, and

" Bnnging disjunctions to the top level allows patterns to match in man- case.,, where it would other. ise
not be possible. For example, given the (non-normalizedi pattern

(AND (OR (IN.CLASS ?JX1 SUBMARINE)
(IN.CLASS ?J.XI AIRCRAFT))

(LENGTH ?JX1 ?JX2))

a service seeking to match the pattern

(AND (IN.CLASS <x> SUBMARINE)
(LENGTH <x> <y>))

could not math The DNF. on the other hand.

(OR (AND (IN.CLASq ?JX1 SUBMARINE)
(LENGTH ?JX1 ?JX2))

(AND (IN.CLASS ?JX1 AIRCRAFT)
(LENGTH ?JX1 ?JnX2)))

allows the match to take place. by keeping the relevant informiation together. In a disjunctie nomi.d
form. each disjunct effecively carries all the information necessa-N for a distinct subquer-.

A standard disjuncti,e normal fomi is a disjunction of conjunctions of predicates or negated predicates: no

variables in such an expression are explicitly quantified. and all are assumed to be implicitly universally quantified.

Existentially quantified variables have been replaced by skolem terms ',noting some individual instantiation of the

variable

The mo ified disjunctive normal form differs from a standard DNF n several respects:

* There is a response clause for every query: that is. an additional predicate whose arguments are the
variables for which we want returned values. In a query requesting a set of objects te g. "Which ships
are in the Indian Ocean"") the argument in the response clause will be the variable denoting the set in
question. The same is true for queries requesting individuals (e.g. "the ship whose speed is 30 knots")
the resulting logical form will seek all possihle individuals that meet the same descnption

4

Report No. 7142 BBN Systems and Technologies CorporAtion

In a yes/no or existential quer-). the response- clause will contain all vanables in the query, since an,,
instanittion of all the query .ariables means an affimniatixe answer: the inabtit to tinld an su~h
instantiation means an answer in the negative, In such cases. a particular variation on the resipisc
predic-ate is used: rather than using the special predicate RESPONSE. %%e use the special predicate
VALL.F-EXISIS-RF\ PO.VSF instead,. this preserves the infomination that the quer 's intent is to find out
if values emast. rather thin to have them returnedI All functional termis must appear as predicates: if P is a binary predlate and Q is a unary function. then
P(X. Qis o miust appear vs Pi. :) atid (2 \. _), where Q'y. z) is true iff Q(=z. For examiple. the

clu(GREATER-THAN (SPEED-OF ?JXl) 30)

will appear as

([AND] (SPEED-OF' ?JX2. ?JTX2)U (GPREATER-THAN ?JTX2 30))

* Similarly, provision is miade tor complex termis like database aggregates: for example. cardtnalt.
a~erage. and Numn Su, h comptex termis miay only appeaLr as the first arg!ument to a special predicaJteIcalled IS-IERM. the second arteumeri is Aal% s a variable dhat represents the tern) For example. it the
logical expression asks for the cardinabity of the ships in the Indian Ocean, we would use the follo%%inc
Clause:5 (IS-TERM #S (CONTEXT

:OPERATOR CARDINALITY

:OPERATOR-VA. ?3X2

CLASS -EXPI ((IN.CLASS ?JX2 SHIP)
(SHIP-LOCATION ?JX2 "INDIAN OCEAN")))

? JX(1)

(RESPONSE ?JX1)

* There is no impliclitassumiption of universal quantification for unquantified variables -- expressions in
the rnoditied DNF may contain unixersal quaintification.

* Existential quaintifier, are removed. not by replacing existentially quantified variables with skolem
terms,, but simpl% remiovirig the explicit existential quantification. The resulting unquantifiel
variables,. alone. with All other unquantified variables in the form,. are conisidered to be qi~'rN qiariticd1The term qiwir\ qiianvJ refer, to %ariables for which we .kould like to get all possible instanitiation.'
Nuch variables anr' neither existentially quantified (since %%e're interested in all instantiaitlimi nor
universally qu~tfied since unmver-.al quaintification has no notion of returniin,,e value,,. thiN kind of
quantifiation iN more like that oft the vanables, in a PROLOG expression

Notice that. bec:ause univ-ersal quantifications are not remov ed, there is no need to skolenlize
existentially, quantified vaniables appearing within the scope of universal quantifiers.

IThe following is a specification of the modified disjunctive nornial form Square brackets ([I) ndi,:1te

optional elements. Contexts are objects with internal components (implemented as LISP structures) -- these objectsI represent distinct logical environmients whose internal components must be kept separate from the remnainder of the
expression.

expression :-([AND] clause+ [response-clause))

I ~ ~~'A oo.pcrati~c ss',tri rnii) sll return the ' ,lucs it iLher es f''r canple -Are aIn% ships C1t rniiiht le3a ti the rrsp.'n~c Ye'.i the CJ %/ipsa,

BBN Systems and Technolo4gies Corporafion Repo)rt %4). 7142

clause (predicate arg+)
context-clause
is-term-clause
in-class-clause

response-clause ("ESPONSE var+) I(VALUE-EXISTS-RESPONSE var+)

context-clause2 disjunction-context
negation-context
quantifier-context

disjunction-context :-#S(CONTEXT

:OPERATOR OR
.CLASS-EXP (clause+~)
[:FREE-VARS (var+)]
(:LOC.L-VAP.S (var+))

negation-context :- #S(CONTEXT

:OPERATOR NOT
.CLASS-EXP clause
[:FREE-VARS (var+)]
[:LOCAL-VARS (var+)]

quantifier-context :- #S (CONTEXT
OPERATOR FORALL

.OPERATOR-VAR var
* CLASS-EXP expression
: CONSTRAINT expression
[:FREE-VARS (var+)]
[:LOCAL-VARS (var+)]

is-term-clause :- (IS-TERM term-context var)

term-context :-#S(CONTEXT

: OPERATOR term-context -operator
OPERATOR-VAR var
CLASS-EXP expression
: CONSTRAINT expression
:STAT-VAR3 var
(:FREE-VARS (var+)]
(:LOCA.L-VARS (var+)]

in-class-clause (IN.CLASS var si~mple-type)

arg .- var Iconstant

var ?JXlI ?JX2 I ?JX3

2Nvt,ta that the ontcni ot content ohbjt &epci-.1 upon the oiperator- for examtple, in a quantificr ontem ieQ HtK.\!L' t~i
clas-cxprcstor fil I~ x T an,!xpre-xirt. -hcea, - thin a negattn onmicxt. that field contain% a lausc

1
1fhis fied i' nt urrentlN U Ck. but i ;rntendcd r ' -ideaplae to, torc in a&fit ittal . atiale. it thc ,. ntax ot the operitr require-

6

Report No. 7142 BBN Sistents and Technologies Corpiratihn

I
term-context-operator :-CARDINALITY I AVG I SUM I

simple-type _p- dona(n-nhdI-Lufl ept-flP# I txp'- xs('i-d:,:.t -. ,pt

predicate : - dora,,n-nidte-roh'-name I t[pe-5x'm-un .xp(

I constant u ipe-st 'n-tid, idial [sr, nt

3 3.3 lJiminatingl [qui'altvnces

Occasionall\. a logiAd expression %o ill include unnecessary equivalences bt,.een termis -- equating a .oflstifflt

with a \aiable. for example. and then using the variable elsewhere in the expression ,here the conNtalt ,uld do

just L., %ell It is helpful to ehminate such equivalences earl' in processing.

Consider the fiolloing expression. resulting f'om the quer "What are the readinesses of the cruisers that arv

not C I "

(AND (EQUAL ?JX109 ?JX110)
(IN.CLASS ?JX11 CRUISER)
(VESSEL-OVERALL-READINESS-OF ?JXII1 ?JX110)
#S(CONTEXT :OPERATOR NOT

:FREE-VARS (?JX110)

:LOCAL-VARS NIL

:OPERATOR-VAR NIL
:CLASS-EXP (EQUAL ?JXl10 Cl)
: STAT-VAR NIL

:CONSTRAINTS NIL)
(IN.CLASS ?JXII0 READINESS-RATING)
(RESPONSE ?JXI09))

Here the %anables ?JX109 and ?JX110 are equated. the elimination of that equivalence simplifieN the

expression .%ithout chanLin vts meaning The resulting expression is

(AND (IN.CLASS ?JXI1 CRUISER)
(VESSEL-OVERALL-READINESS-OF ?JX111 ?JX207)
#S(CONTEXT :OPERATOR NOT

:FREE-VARS (?JX207)
:LOCAL-VARS NIL
:OPERATOR-VAR NIL
:CLASS-EXP (EQUAL ?JX207 Cl)

: STAT-VAR NIL

:CONSTRAINTS NIL)

(IN.CLASS ?JX207 READINESS-RATING)

(RESPONSE ?JX207))3Notice that a ne" %anahle. "A207. has replaced the equivalence class IJX109. 'JXI 10 1.

Not all staiements of equali) are unnecessary: for example, the query "Are there (exactly i three Cl cruiser,,3 results in the follo ing e xpression:

I
I7

UII I l I III

BBN Systems and Technologies Corporation Report No. 7142

(AND (VALUE-EXISTS-RESPONSE ?JX210)
(IN.CLASS ?JX210 CRUISER)
(IS-TERM
#S(CONTEXT :OOWR&.R CARDINALITY

:FREE-VARS NIL
:LOCAL-VARS NIL
:OPERATOR-VAR ?JX210
:CLASS-EXP NIL
:STAT-VAR NIL
:CONSTRAINTS NIL)

?JX219)
(EQUAL ?JX219 3)
(VESSEL-OVERALL-READINESS-OF ?JX210 Cl))

Here the clause ,EQLAL 91JX219) 3) is not an equivalence that can be eliminated.

3.4 Sstem-independent Rew rites

At this stage of the normalization process. the s stem permits the apphcation of oblhvalor% re. niet rule,,.

These rules must be independent of the underlying systems: both pattern and iesult must conist of domaitn-model

information, and the-, may not contain an, references to structures or data in the underl ing system s.

Rewrite patterns may seek to match both simple clauses (i.e.. those that are not contexts;, and context-clauses.

Similarly. results may be either contexts or simple clauses. For example. the follo%tng re%%nte might be used if it

was known that the number of subordinates of a manager corresponded to the number of employees in a manager's

departmnent:

(define-simple-rewrite
4

:pattern ((in.class x manager)
(:context
:operator CARDINALITY
:class-exp ((in.class y person)

(subordinate-to y x))))
:result ((in.class x manager)

(department-of x z)
(employee-count z y)))

Ry using this revrite rule. we transform a query in vhich one actually counts elements in a set (via the

cardinality tenmi into one in "hich a single table lookup is used instead.

41n %in pl(c r. ritc i . and . i ' arablt'

8

Repoit No. 7142 BBN Systems and Tthni ogies Corporation

I
3.5 Printfulctions

Often the logical content of a quer\, does not retlect its desired interpretation Foir e,;ample. a quer\ a simple

as "List the cruisers." if interpreted literally, produces a listing of the databa.,e's iiternil representown for each

cruiser. In the Naxy's IDB domain, this representation is a number called an WID -- a numbetr thait is almost certain

to be completel.v useless to the user as a means of ship identification. What one A ould red!!\ hke is for the sNstem3 to be smart enough to interpret the question as "List the narnes of the cruisers." Printjun(r,,,, pro% ide just that

functionalit,.

3 I The printfunction machnery is quite simple. With certain classes of objects (e.g.. the doman-model concept

1ESSEL one associates a specification for hoN members of that class should be presented to the user. caled a

prinrfuncnrios lrt. Each element of the pnntfunctions hst 'each printlinction) is either I I) the name of a domain-

model role. or (2) the special s',mbol IDEN-ITY. As a postprocessing step of the normaliation. the variables on

the response list are examined, and a nevt response list created as follows:

Let the new response list begin as an empty list
For each variable i on the original response list

Let tpe be the variable's type

If rVpe has no printfunction list associated with it
Add v to the new response list

Else
For each element pfr in the rpe's printfunction list

If pfn is : IDENTITY
Add v to the new response list

Else pjn is a domain model role:
Let nevi be a new variable

Add the clause (pJ nv new) to the query itself
Add the variable new to the new response list

PnntfunctionN are inhented -- in the examples in the following section, responses involving ship classes like

cruiser and aircraft-carner are al\ a s expressed as responses imoling the names of the ships because the class

V ESSFEL ithe top-level class for ships) has the pnntfunction list (,'AMEOF associated with it

3.6 E\amples of Normal FormU
ihe examples in this section 0un. d of a WML. exprCssmin. follom-ed b) its DNT. and then tolloved b, the

normalized form after rewrites and printfunctions have applied (if there wxas any change).

I. "List the ships."

9
I

BBN Systems and Technologies Corporation Report No. 7142

(BRING-ABOUT
((INTENSION

(EXISTS ?JXI LIST
(OBJECT.OF ?JXI (IOTA ?JX2 (POWER VESSEL) T))))

TIME WORLD))

Normalized expression:

(AND (IN.CLASS ?JX1 LIST)
(IN.CLASS ?JX2 VESSEL)
(OBJECT.OF ?JX1 ?JX2)
(MEMBER ?JX1 ?JX3)
(IN.CLASS ?JX3 (POWER EVENT))
(RESPONSE ?JX3))

Expression after rewrites and printfunctions have applied:

((RESPONSE ?JX70)
(NAMEOF ?JX2 ?JX70)
(IN.CLASS ?JX2 VESSEL))

2. "'Which ships are C l"

(QUERY
((INTENSION

(PRESENT
(INTENSION
(IOTA ?JX4 (POWER VESSEL)

(VESSEL-OVERALL-READINESS-OF ?JX4 Cl)))))
TIME WORLD))

(AND (IN.CLASS ?JX4 VESSEL)
(VESSEL-OVERALL-READINESS-OF ?JX4 Cl)
(RESPONSE ?JX4))

((RESPONSE ?JX72)
(NAMEOF ?JX4 ?JX72)
(IN.CLASS ?JX4 VESSEL)
(VESSEL-OVERALL-READINESS-OF ?JX4 Cl))

3. "Which cruisers are not C ?

10

3Report No. 7142 BBN'Ss-stems aind Technologies Corporation

(QUERY
((INTENSION

(PRESENT

(INTENS ION

(IOTA ?JTX8 (PCWn CtI SEP.)

(NOT (VESSEL-OVERALL-READINESS-OF ?JX8 Cl))))))

TIME WORLD))

(ANID
(IN.CLASS ?JX8 CRUISER)

#S (CONTEXT
:OPERATOR NOT

.FREE-VARS (?JX8)
.LOCAL-VARS NIL
.OPERATOR-VAR NIL

.CLASS-EXP (VESSEL-OVERALL-READINESS-OF ?JX8 Cl)

.STAT-VAR NIL

:CONSTRAINTS NIL)
(RESPONSE ?JX8))

3 ((RESPONSE ?JX73)
(NAMEOF ?JX8 ?JX73)

(IN.CLASS ?JX8 CRUItXR)

#S (CONTEXTI :OPERATOR NOT
FREE-VARS (?JX8)

.LOCALL-VARS NIL
:OPERATOR-VAR NIL

CLASS-EXP (VESSEL-OVERALL-READINESS-OF ?JX8 Cl)
:STAT-VAR NIL
:CONSTRAINTS NIL))I 4. "Are any carriers harpoon capable'"

((INTENSION

(PRESENT
(INTENS ION

(EXISTS ?JTX2O (POWER AIRCRAFT-CARRIER)

(HAP.POON-CAPABLE-VESSEL ?JX2O)))))

TIM WORLD))

(AND (VALU-EXISTS-RESPONSE ?JX20)U (IN.CLASS ?JX2O AIRCRAFT-CARRIER)
(HARPOON-CAPABLE-VESSEL ?JX2O))

((VALUE-EXISTS-RESPONSE ?JX74)
(NAMEOF ?JX20 ?JX74)
(IN.CLASS ?JX2O AIRCRAFT-CARRIER)

(HARPOON-CAPABLE-VESSEL ?JX2O))

5. "Are the cruisers and the carriers c I'"

BBN Sy stems and Technologies Corporation Report No. 7142

(QUERY
((INTENSION

(P RESENT
(INTENSION

(VESSEL-OVERALL-READ INESS -OF
(SETOF

(IOTA ?JX56
(POWER

(SET-TO-PP.ED
(IOTA ?JX59 (POWER CRUISER) T)))

T)

(IOTA ?JX57 (POWER AIRCRAFT-CARLRIER) T))

C1))))
TIME WORLD))

(#S (CONTEXT
:OPERATOR OR

:FREE-VARS (?JTX64)
:IOCAL-VARS (?JX56 ?JTX59 ?JX57)

:OPERATOR-VIAR NIL

CLASS-EXP
((AND (EQ ?JX64 ?3X56)

(IN.CI.ASS ?JX56 CRUISER))

(AND (EQ ?JX64 ?JX57)

(IN.CLASS ?3X57 AIRCRAFT-CARRIER)))

:STAT-VAR NIL
:CONSTRAINTS NIL)

(VESSEL-OVERALL-READINESS-OF ?3X64 CI)
(VALUE-EXISTS-RESPONSE ?JTX64))

6. "How mnan\ cruisers are in the Indian Oc:ean."

(QUERY
((INTENSION

(PRESENT
(INTENSION

(CARD (IOTA ?3X65 (POWER CRUISER)

(IN.PLACE ?JX65 INDIAN.OCEAN))))))
TIME WORL))

(AND (IS-TERM

#S (CONTEXT

OPERATOR CARD INALITY

:FREE-VARS NIL

: LOCALL-VARS NIL
OPERATOR-VAR ?JX65

:CLASS-EXP ((IN.CI.ASS ?JX65 CRUISER)

(IN.PLACE ?JX65 INDIAN.OCEAN))

:STAT-VAR NIL

:CONSTRAINTS NIL)

? JX6 9)

(RESPONSE ?JX69))

12

I Report No. 7142 BBN Systems and Technologies Corporation

I
4 Ser ers and Ser% icesI

In an environment Nith multiple underl)ing systems, one must have a unifomi %%a) to de.cibe the capabilitiesI of each underl ing system. We adopt terminology similar to that of[3I and [41.

A serer is a functional module typically corresponding to an underlying system or a major part of an

underlying system. In the application of the MVS system being described here. there are t%%o ser',ers -- one named

:ERL. which supports access to a relational database, and one called :LISP, which supports calls to arbitra. LISP5 function-;. Each server has associated with it:

. A number of se'-ices: objects describing a particular piece of functionality provided by a server.
Specifying a se ice in M-'S pro,, ides the mapping from fragments of logical torm to fragnent. of
underlying systt in code

2. An execution planner: a function that takes a piece of the solution to a query (see section 5) and builds
from it a partial execution plan (see section 6)

3. An executor: a function that takes a partial execution plan together with input data. executes the plan.
and produces output data see section 7).

5 A service is an object consisting of the following components:

* Name: a symbol used to umquely identity the service

* Owner: the name of the serser to which this service belongs.

* Cost: a scalar value indicating the cost of this service: if unspecified. unit cost (I) is assumed.

• Inputs: a list of pattern variables, each of which has associated u ith it a name, a t- pe. and a constraint.
The type indicates the extent to which the input is optional: a type of :GEN indicates that input to this
variable is optional. since this service can generate values for the variable: a type of TEST indicates
that input must be provided for the variable, since this ser, ice is only capable of appl,,ing some test to
the input values: a type of :TEST-ALL indicates not only that input to this variable is obligatory, but that
by the time the data for this variable reaches this service it must be filtered as completely as pX)ssible --
this is oftt.n the type for inputs to services that do response presentation, for example.

The constraint associated with the variable is used for pattern-matching. The possible constraints
include:

1. 1.n-mbol'): a list of svmbols. Items matching this variable must be EQ to a symbol on the lhst.

2. (string): a list of strings. Items matching this variable must be STRING= to a string on the
list.

3. type: a simple type. An item will match this variable if the type (i.e.. type-system type -- see
section 2) of the item is a subtype of t-vpe. (The type of a Janus, variable i is ripe if the clause
(1N.CLASS % type) appears in the (normalized) query.) This constraint does not pay attention to
whether or not a type denotes a set -- if ripe is (S SHIP) (a set of ships). an item with type SHIP

will match, and vice-versa.

4.]iuncnon: a function than takes one argument. An item iae will match this vanable if'f rfcall

function itemi returns a non-NIL value.

5. (SUBTYPE-OF t'pe): a subtype specification. Items matching this variable must theniselse% ht,
tpes in thet Npe s "istem: furthermore, the,, must be subtypes of rpe. For example, a variable
%kith constraint ,SUITYPE-OF SHIPi would match CRUISER (since CRUISER is a subtpe of

I
13I

BBN Systems and Technologies Corporation Report No. 7142

SHIP). Notice hov this differs from (3). above: there the cortraint is that
(SUBT'PE (TYPEOF item) r". pei must be true. whereas here the constrant is that
(SUBTYPE item tipe) must be true.

6. NIL..AN-TPE. T: these w,,ill match anything

" Outputs: a list of pattern variables, identifying the outputs of the sere'ice. Outputs need not hate been
inputs, nor must inputs to the service also be outputs.

" Pattern: a pattern specification which will match some piece of the logical form. The pattern
specification must be a list. each element of which is the pattern for either a simple clause or for a
context-clause. Within patterns. one can not have a variable predicate: howxever. the arguments to
predicates must be pattern variables (see inputs, above, for a description of ho% to constrain %hat these
variables may match).

A pattern specification for a context-clause (context-spec) takes ine of two forms.

(:context :operator operator
:free-vars (iar')]

[:operator-var var]
[:stat-var var]
[:class-exp expression]
[:constraints expression])

For this form of pattern specification. the context-spec's operator must match the context's operator.
and recursive calls to the matcher must return successfully for the :class-exp and :constraints.

(:context :operator operator
[:covers-owner server-name])

This second form of pattern specification allows one to say. "This service will match anr context ,.ho.se
operator is operator, as long as there are solutions of the :class-exp subexpression and of the
:constraints subexpression such that both solutions belong entirely to server serer-naent'" For
example. a context-spec for operator CARDINALITY specifying that it covers owner ERL says. in
effect, "This ser' ice can take the cardinality of any set. as long as that set can be obtained entirel by
calls within the :ERL server." This is a useful method of providing general services that handle
aggregate operations A ithin a single server.

o Method; a code fragment or other information that the server %ill use in generating a partial execution
plan from a solution that utilizes this service. What goes in the method slot depends entirely on the
particular server to which the service belongs.

For fast access, services are indexed b> the predicates in their pattern. That is. for every clause IP _Vx) in the

pattern of some service S. there is a pointer from the symbol P to the service S. An exception to this is the INCLASS

predicate: if a service's pattern includes ([A.CLASS x C), the pointer will be from the symbol C rather than the

symbol IN.CLASS: that is. the indexing proceeds as if the clause were C(.o.

As an example, consider the service-object corresponding to the :ERL server's ability to access a table

associating ships with overall combat-readiness values:

14

I Report No. 7142 BBN Systems and Technologies Corporation

I
NAME: VESSEL-OVERALL-READINESS-OF859

OWNER: :ERL
INPUTS: (<x> <y>)
OUTPUTS: (<x> <y>)
PATTERN: ((VESSEL-OVERALL-READINESS-OF <x> <y>))

COST: NIL5

METHOD: (((VESSEL-OVERALL-READINESS-OF X Y))
(BINDTOERL ((X IUID) (Y RDY)) IID.RDY))

I The name and owner fields are straightforward: the service has a unique name and belongs to the server

named :ERL (in a current implementation. :ERL is the server that can access the Navy's relational database). The

pattern is also particularly simple. a single clause. Note that the variables printed ws <x> and <y> are objects:

NAME: X
TYPE: :GEN
CONSTRAINT: VESSEL

NAME: Y
TYPE: :GEN
CONSTRAINT: READINESS-RATING

Because both are type :GEN, this sern ice does not require input values for these variables. The pattern will match

clauses only when the type of the first argument (matching <x>) is VESSEL. and the tpe of the second argument

(matching <y>) is READINESS-RATING.

The method field for serices beloning to the :ERL server contains tMo pieces: first. the pattern that was

matched; second. a code-like fragment that relates variables to fields and specifies a table from which to dra, those
fields 6

The scheme for indexing sc- ices establishes a pointer from the symbol

VESSEL-OV5R.L.L.-READINESS-OF to this service.

5 Formulation

3 The job of the formulation algorithm is to locate all ser ices that might be resources for satisfying a request,

and find the best possible combination of services from that set. where "best" typically means lowest-cost. Thus is

inherently a search problem. 7 Previous approaches to the formulation problem have included using NIKL

3 5
The cost field is unspeified, therefore th- er' kc is assumed to h',e unit sost.

rThis is a simplification: the table specifi ation ma, be a fragment of ERL code. complete with JOtNs. SELECTs, etu.

The fo,,mulation problem, %hen its input is a ,onjunction of non-neitated simple clauses, can be siesed as a kind of set-cern' problem
iS(P), which is NP-complete [I . The SCP - an ie fomiulated a, follo : giren a set S = is,. s. s.) and a collection C = tC 1, C Cm)
such that each C is a (pr,,per sut,ct,,f S and eah C has a posiite cost ., find the suhet C' of C such that iI i the union o.er C" equals S. and

i the ,urn of thr osi.- 'cr(i s niiniized In the fir ulation problemi. S is the e of lause, and ck h element of C is a sers ice.

I
15I

BBN Systems and Technologies Corporation Report No. 7142

classification [.1 and a kind of A* search [31. The approach here resembles a beam search. and uses a greedy

heuristic.

The first two subsections describe two objects. partial solutions and matches, that are imponant at the

implementation level: the third section describes the formulation algorithm.

5.1 Partial Solution,

The main structure used in the formulation stage is the partial solution, an object used in buildhng up a

collection of services for a given input expression. Initial partial solutions are created from individual er,,ices:

otherw ise partal solutions are created by combining other partial solutions. Each of these obiects has the follo. ime

components.

" Expr: clauses from the logical form that this solution does nor cover. In the ernpr solution this tield is
equal to the input expression: in a complete solution this field is empty.

* Cost: the combined cost of all the component solutions making up this solution.

" Input-links: the mapping from variables in the logical expression to variables in the solution's
service(s).

" Output-links: the mapping from variables in the solution's service(s) to variables In the logical
expression.

" Inte,-nal-partials: the collection of initial (sometimes also called prmtn e) partial solutions from
which this partial solution was constructed.

" Matches: the collection of match objects belonging to this partial solution. There is one match object
for each clause matched b,. a service. See section 5.2.

" Local-matches: this field is currently unused, but is intended for use \,%hen optional system-dependent
re\. rites are introduced.

• Goodness: value based upon the sum of the cost of component solutions and other factors (e.g.
communication cost between component solutions)

5.2 Matches

A match is an object built during pattern-matching. Matches are also used during later stages of processing.

since they pro,,ide the link between a partial solution and its component services. Each match object compriscs.

" the ser ice. part of whose pattern was matched

* a "name", consisting of a list of the service and an instance number. used to distinguish different
instances of the same service (for example. when one service matches t%o different parts of the same
pattern -- see page 19)

" the clause in the input expression that was matched

* the clause in the service's pattern that did the matching

" the variable mappings produced by the match (see also input-links and output-links. aboveI

16

Report No. 7142 BBN Svstenr and Technologies Corporation

I
* embedded partial solutions created %'ia recuri'%e call,) to the formulation alionthmi applhcahlL onl\

i khen the matched clause is a context. and thercf,,re has internal subexpressions.

* embedded variable mappings associated % ith the embedded patial solution.-

For example. consider a ser, ice named ,.0fEMOF32& Ahose pattern is ((NAMEOF <x> <N>t,. and an input

expression contairung the clause ,N.\-XfEF 'iXI "1 LVCEN.A'ES. The match object created bN the pattern marcher

%%ill look like:3oSERVICE: (Service: NAMEOF328]
VAR-MAPPINGS: (("VINCENNES" Y) (?JX1 . X))
PATTERN: ((NAMEOF <x> <y>))
CLAUSE: (NAMEOF ?JX1 "VINCENNES")
EMBEDDED-SOLUTIONS: NIL
EMBEDDED-MAPPINGS: NIL

As a more complex example, consider a service named GE.%EtAL-CARDIAL7Y. bclongne to the LISP

serer, that matches cardindit expression.,. The quer "Hov. many C I cruisers are there " produce, the request

(AND (IS-TERM
#S (CONTEXT

:OPERATOR CARDINALITY

.FREE-VARS NIL

.LOCAL-VARS NIL
: OPERATOR-VAR ?JXI
:CLASS-EXP ((IN.CLASS ?JX1 CRUISER)

(VESSEL-OVERALL-READINESS-OF ?JX1 C1))
:STAT-VAR NIL

:CONSTRAINTS NIL)
?JX5)

(RESPONSE ?JX5))

The match object created b\ matching the GE. VEIRAL-CARDI\.ALITY ser-ice to the first ,laue is

17
I

I'I
I

I
17

I

BBN Systems and Technologies Corporation Report No. 7142

SERVICE: (Service: GENERAL-CARDINALLITY]
VAR-MAPPINGS: ((<c.GENERAL-CARDINALITY.5> .?JX5))

PATTERN: ((Context-spec: CARDINALITY])

CLAUSE:
(IS-TERM

#S (CONTEXT

OPERATOR CARDINALITY

:FREE-VARS NIL

:LOCA.L-VARS NIL

OPERATOR-VAR ?JX1

CLASS-EXP
((IN.CLASS ?JX1 CRUISER)

(VESSEL-OVERALL-READINESS-OF ?JX1 C1))
:STAT-VAR NIL
:CONSTRAINTS NIL)

? JX5)
EMBEDDED -SOLUTIONS: ([PS:9.OJ NIL)
EZBEDDED-MAPPtNGS:

(((CRUISER .<w.CRUISER23.2>)
(?JX1 .<x.CRUISER23.2>)

('?JX6 <y.NAMEO328.3>)
(?JX1 <x.NAMEOF328.3>)
(Cl .<y.VESSEL-OVERALL-READINESS-0F859. 1>)

(?JX1 .<x.V7ESSEL-OV'ERKLL-R-EADINESS-0F859. 1>)

((?JX6) .<X.VALUE-EXISTS-RESPONSE.4>))

NIL

((?JXI <X.GENERAL-CARDINA.LITY>)))

The expression embedded in the cardinilitN lue!.sc~ ~ssle eus~l in thecourse of the niatching'

The solution. ,%which retrieves all the Cl cruiscr,. is thle first element in the EMBED)[ED-SOLV-TIONS lieltt aho'~e

The second element in EM]BEDDED-SOUtJT1tNS is NIL beccause there \, as no constraunt expre,,Nion -- hald ttu'"

context been. sa\, a univeral quantification !YW1ILL ar chzv. -exp (0fl1ttu m,. then thi.s second eeient %%ould

have been the solution to the consrrainrs expression,

5.3 The Formulation Ahm~rit hn

The formulation algonthm is showxn below.

18

Report No. 7142 BBN Systerms and Technologies Corporation

I
Find the set P of titrnzmparnialsoltons for request expression.
Choose the "best" n elements Pl . . . Pn in P, and

let focus set F = {p 1 -. . p }
While no member of F is a complete solution

Choose the n best elements f. . . fn of FFor eachf.

"Age" f", reducing its goodness by some factor

Choose the best element p from P that can be combined with f,

Let fj' = combine-partials (f,,p)
Add fx' to F

If no member of F was expanded,

eport that no solution was foundU Else
Let F = the best n elements of F, plus complete solutions in F

U Each iniad! par'al .oaun is essennally an instance of a service whose pattern has been completely matched

by part of the expression These are found b tirst restricting the search to those services matching some predicate

appearing in the pattern recall the discus\ion of ho ser-, ies are indexed. m secton 4
K then doing more complete

pattern-matching on the restncted set. The set of initial partial solutions includes all possible %;a\s to match a

service to a pattern. For example. gisen an expression

(AND (P ?JXI) :clause (1)
(P ?JX2) :clause (2)

(Q ?JX3)) :clause (3)

and a ser- ice v. ith the pattern

(AND (P <x>)

(Q <y>))

there \xill be mo initial partial solutions produced. one in vhich the ser' ice h, matched clauses (I i and (2 1 and the

other in % hklh the se. ice ha. matched clauses (i and, 3

I BegtnninL e.i tNI ,ou et of mitial partal solutions, the tonmulation algonthm seeks to expand soluton, in

the locus -sel Aging' element, in the hocus set -- that is. reducing their goodness h\ some small tachr ea.h3 iteration -- result, in thr,%kini' out nonpr ,duct1,e solutions after a s hlue Thiv, algo rthm is not complete it is

possible that no member of the initial locus set .ll provide a successful starting point, one might consider adding a

step in the it h. loop that allois ne%% slatting points to be added to the focus set. Nor does the greeds heunstic used

I guarantee finding the optimal solution

Partial solutions can onis be combined if there is a connect'i betv een them one % anable pro- ided as outputIb one solution must be desired as input b\ the other. The combination does not. ho e,.er, cement these

input output links. establishing such data dcpendencies is the job ot the execution planner isee section 6). Alter

combining tv, o partial solutions, the resulting parial solution's input is the urn ,ri o the omponent solution, input:.,.
and the outputs include any output provided by a component partial solution

I
I

19I

BBN S% stems and Technologies Corporation Report No. 7142

;.4 Fo(rmiulation and Embedded Coflte\fs

Notice that the formulation aleorithni does not include recursive calls to its~elf Calls to the tbrrnul.ition

algzonthni for handling embedded expression,, Oie . the class expression or const-rit expresiuon i)(t a contesti alp,

made as parn of the pattern -matc hing process (see section 5 2 .It is necessary to find all the possible ka s that the

embedded expressions can be solved. hel*Ore doing panter-n-maching at the top level. WVhen seeking serv ices that 'A ill

cover a context clause, the pattern matcher

1. Finds the set S of services whose pattern include,, some coi.,ext-.specification vMhose operator matches
this context's Operator (eg., CARD, FORALL)

2. Finds a collection" C, of solutions to the context's class expression by. recursively caling the
formulation algorithm on it

3Finit a collection C, of solutions to the context s constraint expression. in the same manner

4. Takoes the cross-product of C, and C,. to form a set C' of enihedded (or intt rpiah soluticns for the
context clause Each embedded solution represents one possible k~a\ to solve the embedded
expressions.1

5. For each service in S and for each embedded solution in C'. checks wkhether S matches the ontext
clause assupnng that particular embedded solution.

Some sen ices in S make use of the embedded solution infol-mition in miatchine, element-, tn this set of
pattern clauses (see the discussion of the pattern field in services, specifically the use of the
COVERS-OWNER parameter. in section 4 1. Other ser ices do rot use the embedded solution

informnation tor patternmatching In either case. of course. the embedded sOluuioni , %ill be use,] for
execution plannin.,

6 F~ccution Planning

The job of the executicin-planning phase is to take a complete solution produced hy the formulation digonthni

and produce an eirec 01100 p/a,,i that makes use of the rezsourcs specijfied bY the soluion and pros ides I speiti5canon

of the dataflcr% amiong those restiurces

Rc.. ill thit the form tionr .ilg'cthrc pri do.Ccc ,itouions

.0An e..eption to this is the Ic.. it i . ,,cei n ccc'his I the li' rxpressin field omntaincs an arbitrcril% lomi~ list i disjunL esaC~.h ifo tchi.h

must hie -1iled resursiscis It eCkh Ji.lsutx t .ir bie -1t'Ci in sectalIi sJNs.i i c inipri..ti. al t,, take the r-s -pr..ici..t. instej~i. ie reatr onix 'tne

cnitie ded -lutwi usintz tc.he .v t -liccci fot.r ci..h J Njin, t

20

Report No. 7142 lBBi Systems and Technologies Corporation

I
6.1 Partial l\ecution Plals

1 An execution plan i, a sequence ofparial excunfild t. each i, hh -onsists of the follo,,ing

* Oiner. the name of the server to hich this partial plan belong.., and \,hich %%ill execute rhw n,,rual
plan

" Inputs. the input. a- identified b, the Janus va nables (prefi\ed b\ "'JX' in the request that this partial
plan expe:ts to rece

* Outputs. the outputs (alo identified by Janus varables) that this partial plan vill produce

* Wrapper a place to hold the data passed to this partial plan hy other partial plans. The wrapper is an
object that includes.

• A List of streams -- pointers hack to Awhere the data came trom

" For each stream, a list of lah,ls -- each label is a Janus variable from the requestI For each stream. a buker containing the actual tuples passed in as data

For example. the v, rapper for a partial execution plan tafter a presious partial plan has been executed,
might look like this.

#S(WRAPPER :STREAMS (#S(PARTIAL-EXECUTION-PLAN...)
:LABELS ((?Jx1 ?JX2)
:BUCKETS ((("VINCENNES" 1)

("NIMITZ" 2)
("FREDERICK" 1)...)))

This %,t-apper has onl. received input from one place the partial plan on the STREAMS list. The data
are in the form of pan's -- the first element in each pair is an instantiation of the Janus vanable 'JXl in
the request. and the second element in each pair is an imstantiation of the vanable .JX2.

" Bod. *: the code to be executed by the serer (i.e . by the server's cleuma,r function)- This code is built
by the server's ex eczuon p!a,,er function.II

6.2 Partitioning and Establishing Dependencies

There are tx.o processes in cr.ating an execution plan from a complete solution. parntori:zn the solution

according to serer. and setting up the dependencis' among the nodes in the partition, based upon the possible inputs
and output, of each node There is a certain circularity here that makes the process difficult: one can not set up

dependencies until the solution is partitioned according to server, yet in order to partition properly (for example, to

split a node belongitig to a particular server into tv..o nodes in order to allo" another node to fit between them) one
needs to know % hat the dependencies are. The current implementation does not handle this issue particularly well:

it partitions first. then attempts to set up dependencies.

Assuming that partitiomng has been reasonably done, there is another problem of circularit), involving the

expected input. and outputs of each node: one wrould like to be able to operate from a global perspecti'e. using the
expected mputs and outputs to optimally plan dataflow links: on the other hand, at the le-'p nf each node. one would

like the global planner to po id, the destred inputs and outputs, so as to produce optimal code for this node of the

execution plan. In essence. the global level says. "tell me ,,hat to expect." and the local level says "tell me " hat you

I
21:

Iz

BBN Systems and Technologies Corporation Report No. 7142

need'' The current implementation is lmited as follo%% s: planning at both le, els :L'sumes that all inputs are

provided, and all outputs are required.

6.3 Serier" Lt-culhoi Planner,

As discussed in section 4, ever, server has associated with it an eecw. on planneur function. Execution

planner functions take three arguments:

I. A list of [anus variables it can expect to have values tbr as input,

2. A list of Janus variables it should produce as output, and

3. The solution-object for the portion of the query that is to be handled. From the solution object. one
can obtain the component services (and thus their method slots, which contun the necessary code
fragments) and variable mappings from Janus % anables, to serice variables.

These functions should return:

1. Code to be executed by the execution function (see section 7),

2. Reductions from tuples to single variables, if an% (e.g.. if the execution-planner determines that output
variable ?JX3 should be treated as (tuple ?JX! .',\2) for information-pa-,sing. then the list
(?JX3 JXI ?JX2P is one such reduction). and

3. The Janus variables that the code will produce output for.

7 Execution

The execution phase takes an execution plan (i.e.. a list of partial execution plans., and iterates through it

sequentially.

For each partial execution plan p
Combine the data from the streams in the wrapper of p
Call the execution function for the owner of p
Pass the output tuples (according to the dataflow links of p)
into the wrapper objects of partial plans further on

Return the output provided by the last partial execution plan

7.1 Combining Data

Previous approache" to the multiple systems problem (e.g., [41 and [3]) have assumed, for the purpose of

execution. a straightforward dataflow model in , hich nodes accomplish execution and arc,, are streams of values.

Unfortunately. the problem of passing and combining data among multiple systems is more complex than this model

will accommodate. In most cases, it is necessary to pass sets of tuples rather than sets of values, using a

generalization of the join operation to combine data. There are problems that even this does not address.

22

Report No. 7142 BBN Systems and Technologies Corporation

7.1.1 Pas.singtuples. not %alues

Consider a scenario in w hich the user has requested a table of 'the speeds of the ships in the Indian Ocean

that are faster than 20 knots", and in ,,hich the resulting solution mn oles four services:

1. Generate generates pairs of ship,, and speeds.

2. Filter-location hfiters a list of ships according to whether or not they are in a given lo.atin.

3. Filter-speed filters a ist of numencal speed values according to whether or not the\ are faster than a
given speed. and

4. Present presents a table of ships and speeds.

In a model in which streams of values are passed, generate will pass a stream of ships to filter-location. wNhich will

pass a filtered stream of ships to present: generate will also pass a stream of speeds to filter-speed. ich \,kill pas. a

filtered stream of speeds to present.

GENERATE

<SHIP, SPEED>

SHIPLOCATION SPEED

SHIP SPEED

m PRESENT

I

I The problem is this present has received both ships and speeds, but how can it now deride w-hih speeds

belong to w hich ships? The relation of ships to speeds , as lost because, although pairs were generated b, enerate.

they were split up in order to pass the data. once split up. there is no way to put them lack together again

An obvious approach to solving this problem is to pass not streams of values, but streams of ruples of values.

never breaking up a tuple. This increases the volume of data passed. of course, but it does ensure that the

appropriate relationships are maintained.

I Now suppose that the same arcs represent the passing of tuples rather than of in, idual values. Generate

I 23
U

BBN Systems and Technologies Corporation Report No. 714:

generates pairs <ship. speed> of ships and speed values. Because filter-location requres the ships. generate passes

all the pairs to filter-location. ,%hich filters out those tuples in which the ship is not at the appropriate location

Filter-location then passes the filtered set of tuples to present. Because filter-speed requires the speed values.

generate passes all the pairs to filter-speed, Mhich filters out those tuples in which the speed is too slow.

Filter-speed then passes the filtered set of tuples to present.

GENERATE

<SHIP, SPEED>
J,<SHIP, SPEED> <SHP, SPEED>

The situation has improved, in that we have maintained the association between ships and speeds. However.

present has now, received two different sets of ship-speed pairss, one filtered according to a property of the ship. and

the other according to a property of the speed. How do we combine them7

7.1.2 Join and Cross-join

A solution that works in many cases is a database join across the attributes that the streams have tn common. I

A join effectively takes the cross-product of the incoming ses 01 tuples. and then removes from the cross-product

any tuples in which the values of the common attributes are not equal. For example. the join of a set of taples

<ship, location> with a set of tuples <ship, speed> across the attribute ship will result in a set of tuples
<sip, "ocaziom, speed>. which will include only values of ship that appeared in both sets of tuples being joined.

It is quite possible that two Lor more) streamrs of input will have no attrbutes in common, and in such cases

join can not be used. In such a situation, one would like to use a version of the join operator that computes the cross

product. but -- because zero attributes are held in common -- does not attempt to do the filtering operation.

I I thius ,.a-. both attributes -- ship anid speed-s aloe -- ,are in ,ommon, so the in is Just the iniersection of the rso ets of tuples

24

•~ ~ ~ 10
<SIP SF

I I

Report No. 7142 BBN Sy'stems and Ttchnologies Corporation

I
For this reason. 6%e use a combining operator called cross-join: when the incoming streams have attributes in

common, cross-join is equivalent to join when there are no common attributes, cross-omi is equioalent to the

cross-product.

7.1.3 Probletni %%ith cross-join

In some cases, the strategy adopted bN cross-join is not appropriate. For example. suppose the user ha,

requested the con-nmanders and destinations of all the ships. and that one server generates pair, of

<ship, commander> while another generates <ship. destinationi>. Suppose. further, that each of these serv.ers has

only incomplete information so tb't each produces tuples about some ships not kno.'n by the other.

SHIP (?jxl) COMANDER (?jx2) SHIPiJ?_Jx1) DEST (?jx3)

VINCENT SMITH VINCENT HAWAII
FOX JONES NIMITZ HAWAII
FREDERICK BROWN FREDERICK SAN DIEGO

In such a case, the cross-join operation will recognize that the shti, attribute is held in common b\ the

incoming sets of tuples. and thus combine the sets of tuples using join:

SHIP (?jxl) COMMANDER (?jx2) DEST (?jx3)

VINCENT SMITH HAWAII
FREDERICK BROWN SAN DIEGO

Notice that as a result of join's filtering operation. FOX and NI.Y7 Z do not appear in the output data. Considering

the fact that the user requested the commanders and destinations of all the ships. this is an undesirable result: it is

likely that the user wants to see whatever information is available about each ship even if that information is

incomplete.

This example serves to illustrate that cross-join is not appropriate in all instances. Unfortunately. there is

currently no easy vay to identify such cases. For the present time. cross-join is always used to combine data.

7.2 Servers" Eecution Funclions

The execution function (or executor) for a server is a function taking the following arguments:

1. A list of tuples representing input v alues.

2. A sequence of Janus variables identifying the tuple elements. and

3. Code produced by the execution planner.

The execulion function should return two values:

I. A list ef tuples representing output values, and

2. A sequence of Janus variables identifying the tuple-elements.

U
25I

BBN Systems and Technologies Corporation Report No. 7142

8 Status and Extensions

8.1 Experience

The MUS component described in this documentation has been successfully implemented and used in the

domain of the Fleet Command Center Battle Management Program (FCCBNP). using an internal version of the

Integrited Database (IDB) -- a relational database -- as one underlying resource, and a set of LISP functions as

another. The system includes more than 800 services, and produces an execution plan for a typical request in

seconds or fractions of secords: it also reports failure to create an execution plan within seconds (for example. in

cases where no service exists covering part of a request expression). Queries handled include those involving

negation of simple predicates, existential and universal quantification. cardinality, and the most common

disjunctions,12 as well as queries that are simply conjunctions of clauses. Both quenes requesting values (actually.

tuples of values are returned) and yes/no quenes are handled.

An earlier version of the system described here was successfully used within an expert system project. in

which Janus provided natural language access to data in Inte~licorp's KEE knowledge-base system to objects

representing hypothetical Nsorld-states in a simulation system and to LISP functions capable of manipulating this

data.

8.2 Limitations and Extensions

There are several limitations and possible extensions in the current implementation of the system:

1. Although underlying-system-indepedcn rerite rules are supported, underlying-system-dependent
rewrites are not. In order to alloy these, it is necessary to modify the formulation algorithm so that.
rather than expanding an intermediate partial solution. one can modify it by applying a system-
dependent rewrite. One would need to avoid combining partial solutions evolved from different
request expressions, as could be the case if different rewrites have applied.

2. The formulation algorithm is not complete: it is possible that none of th- .;t.l partal solutions
chosen as starting points can be expanded into a solution that covers the entire request. One might
consider using a different search algonthm (e.g.. a modification of the A* search employed by [31) or
modifying the algorithm to make it complete.

3. The model of service costs, assuming a single scalar cost value, is too simple for many likely real-
world situations. A better model would distinguish aspects of cost like the reliability of the service's
data, the cost of communicating with it. and the service's time and space requirements.

4. The current execution model assumes that the representations of entities are the same in different
underlying systems. This is a severe limitation and should be addressed as soon as pcssible There are
three immediately apparent cases:

e Spelling v riations. For example, one system may store the name of a ship as the "CARL
VINSON" ,%hile another stores it as VINSON C".

2Thw.e expresing memicrhip in i ct. e.g . OR ,EQ c t'm,, EQ tten2,

26

I Report 'No. 7142 BB% Systems and Technologies Corporation

I
* Diffterent internal representations. For example. one s stern may store "the ship itself' a, m ID

number eg. 01 3)j %hile another uses the ship's name (e.2. "VINSON C).
I Diffenniv data decompositions. For example, one sstem na store date, as single values 4e ,

date=O - 13-65"i while another stores them as several values (e.g. nmonth=07 da,=IS.
year=65 i.

5. Error recover. A single plan is created in response to a request. and if it fails, the system has no

recourse but to report an error. It should be possible to modify the foremulation and execution-plannin.!
phases of processing to allow the creation of alternative plans. Notice that this still does not address
the reasons for plan failure: if a disk error has been encountered while making use of a resource, it
makes no sense to tir again with a different plan that requires the same resource.

I
I
I
I
I

I
I
I

I
U

27I

BBN Systems and Technologies Corporation Report No). 7142

Re fere~nce s

[I] Garey. MI. R. and D. S. Johnson. Computers and lntractahiit A Quidto the lhtc r) ' \PC~~h&?
Freeman. San Francisco. 1979.

[2] Hinrichs. E., D. Ayuso. and R. Scha. The Syntax and Semantics of the JANT_ S Semantic Interpretation
Language. In R. Weischedel. D.Ayuso. A. Haas. E. Hirichs, R. Scha. V. Shaked. D. Stallard ieditors), Rcsear Ii

and Development in Natural Language Understandink: as Part of/the Strategic Lomnputmig Pro gram., chapter 3.
pages 27-34. BBN Laboratories, Cambridge. Mass.. 1987. Report No. 6522.

[3] Kaemnmerer. W. and J. Larson. A gr-aph-oriented knowledge representation and unificatijni whnque for
automnatically selecting and invoicing software functions. In Proceedinigs AWA-&? Fifih .Mational Conferencie on
Artificial Intelligence. pages 82-5-830. AAAI, Morgan Kaufimann Publishers. Inc-. 1986.

[41 Pavlin. J. and R. Bates. SIMS5: Single Interface to.Multiple Systemns. Technical Report [SI/RR-88-200. 151.
February. 1988.

[5] Stalard. David. Answering Questions Posed in an Intensional Logic: A Multilevel Semantics Approach. In
R. Weischedel. D.Ayuso, A. Haas. E. Hfinnchs, R. Scha. V. Shaked. D. StLIlard (editors). Re.se'an., hand
Development in.Natural Ltngu~age Understanding as Part a/fthe Strategic Comzputi Program. chapter 4. pages
35-47. BBN Laboratories, Cambridge, Mass., 1987. Report No. 6522.

[61 Stallard. David. A Manual for the Logical Language of the BBN Spoken Language Svteni. Jul',. 1988.

28

